MARTILLOS PERCUTORES

Lo que todos los escaladores conocemos como taladros son realmente martillos percutores y una de sus principales diferencias, a parte del precio, es que a pesar de ser más potentes los martillos percutores dan menos percusiones por minuto. Así un martillo percutor raramente pasará de 5000 percusiones por minuto mientras que los taladros pueden alcanzar las 50.000.

Tenemos dos tipos de martillos percutores atendiendo a la energía que los hace funcionar: los de gasolina y los electro-neumáticos.

MARTILLOS ELECTRO-NEUMATICOS

Existen actualmente en el mercado varios fabricantes de este tipo de martillos, los más populares son: Hilti TE2A y TE6A, Bosch GBH 24v y V-LI 36v, Kress PHA, Makita BHR200, Spit 327 y 32, etc...

De un martillo percutor, el fabricante nos va a dar diversos datos que nos van a ser útiles a la hora de determinar su rendimiento y por tanto cual es mejor en teoría:

LA BATERIA

Tres son los componentes que los fabricantes utilizan a la hora de montar una batería a sus martillos:

- Las baterías de Ion-Litio (Li-ion)
- Las baterías de metal hidruro-Niquel (NiMH)
- Y las baterias de Niguel-Cadmio (NiCd).

Las baterías de Li-ion no tienen efecto memoria y de las otras dos, las de NiMH tienen menos efecto memoria que las de NiCd. El efecto memoria por decirlo en plan fácil se produce cuando ponemos a cargar una batería sin haberla descargado por completo antes. En ese caso la batería "recuerda" esa energía que no ha consumido haciendo perder un poco su capacidad. Si lo hacemos a menudo cada vez tendremos una batería con menos capacidad hasta hacerla inservible.

¡¡Descargad la bateria todo lo que podáis antes de ponerla a cargar!!! incluso es recomendable en las de Li-ion .

El **NiCd** tiene mucho efecto memoria pero a cambio es muy eficiente y funciona mejor en condiciones de intenso frío (hasta -30°C).

Aunque las de NiMh duran más.

DATOS DEL TALADRO

A. Capacidad de la batería

Las baterías miden su capacidad de almacenar electricidad en $\bf Ah$ (Amperios x hora), por tanto cuantos más $\bf Ah$ tenga la batería mucho mejor.

Es decir, si tenemos una batería de 2Ah y el martillo percutor consume 1 amperio podrá funcionar dos horas y si consume 2 podrá funcionar una, y si consume 0,5 podrá funcionar cuatro.

B. Voltaje

Los martillos percutores pueden ser de 24 voltios (V) o de 36 voltios.

Este valor por sí mismo no significa mucho pero más adelante veremos que nos es necesario para ciertos cálculos.

C. Consumo

El consumo del martillo percutor se mide en vatios (W). Los valores más usuales varían entre los 300 y 600 vatios.

A igual voltaje, **nos permite comparar qué martillo consume más electricidad**. Si consume más, las baterías durarán menos.

Por tanto no es algo especialmente bueno que ese valor sea alto. Aunque al final veremos que con matices, que tampoco es mejor siempre el taladro que menos consume.

D. Fuerza de la percusión

Se mide en Julios (J), indicándonos con cuanta fuerza golpea la roca el martillo. Cuantos más Julios mejor; oscilando los valores entre 1 y 3 Julios.

E. Percusiones por minuto

Medida en percusiones por minuto (aquí no tenemos unidades). Cuantas más percusiones mejor. Aquí los valores oscilan entre las 4000 y 5000 percusiones por minuto.

La combinación de estos dos últimos factores, fuerza de percusión y percusiones por minutos, es determinante para hacer un aquiero

rápidamente.

F. Peso

El peso de los martillos electro-percutores suele ir de 3,5 a 5 Kgr.

Autonomía, trabajo por minuto y trabajo total

Teniendo claro lo que significan los valores de los datos aportados por los fabricantes estamos en disposición de poder comparar las capacidades de los distintos martillos electro-neumáticos.

A. Autonomía

Es el tiempo que puede trabajar al 100% de potencia un martillo con una batería. La autonomía podemos obtenerla utilizando los valores de la capacidad de la batería (Ah), el voltaje del taladro (V) y el consumo del taladro (W)

Usaremos como ejemplo el taladro de **Bosch GHB 24v** cuyos datos técnicos son:

- Modelo bateria: NiMh de 2,6Ah
- Consumo taladro: 350 vatios
- Consumo taladro Voltaje taladro: 24v
- Fuerza de percusión: 1,3 Julios
- Voltaje taladro Percusiones minuto: 4.400 perc./min

En primer lugar calcularemos la intensidad en Amperios que necesita el taladro. Se calcula dividiendo el consumo entre el voltaje:

Intensidad necesaria = 350 W/24 V = 14,6 A

¿Y cuando nos dura la batería a ese ritmo? Dividimos su capacidad por la intensidad necesaria

Autonomía = 2'6 Ah / 14,6 A = 0,18 horas o sea 10,7 minutos

B. Trabajo por minuto

Calcular este valor resulta bastante sencillo, necesitamos saber:

- La fuerza de percusión (J)
- Las percusiones por minuto

Trabajo x minuto = 1.3 J * 4.400 perc/min = 5.720 J/min

El valor resultante nos va a dar una idea de la rapidez con que taladra el martillo.

C. Trabajo total

Por último para saber el trabajo total hemos de multiplicar la Autonomía por el Trabajo por minuto, valores que hemos obtenido anteriormente.

Trabajo total = 10,7 minutos * 5.720 J/minuto = 61.204 Julios

Este valor es el que nos dice realmente cuanto trabajo hace globalmente el taladro con una batería y que por tanto podemos comparar con el de otros martillos.

Resumiendo:

El **trabajo total** nos servirá para comparar que martillos hacen más agujeros.

El **trabajo por minuto** nos servirá para saber qué martillo hace agujeros más deprisa aunque haga menos número de ellos.

CUADRO COMPARATIVO DE MARTILLOS

Para comparar los diferentes martillos del mercado hemos de **normalizar** el **Trabajo total**.

¿Qué es normalizar? Es adaptar los valores a una norma. En este caso la norma voy a suponer que es el trabajo total que hace el Bosch GBH 24v (el de nuestro ejemplo).

Así que mediremos todos los martillos en relación a él.

Si un martillo tiene un valor de 1,8 quiere decir que hace 1,8 más agujeros que el Bosch GBH 24, así nos será más fácil compararlos.

MODELO	BATERIA	CONSUMO	VOLTAJE	AUTONOMÍA CALCULADA	FUERZA PERCUSION	PERCUSIONES MINUTO	TRABAJO MINUTO	TRABAJO TEORICO TOTAL	TRABAJO NORMALIZADO	PESO
BOSCH V-Li	Li-Ion 2 Ah	600 vatios	36 voltios	7,2 minutos	3,0 Julios	4.260 per/min	12.780 Jul/min	92.016 Julios	1,5 +	4,3 kg
BOSCH GBH	Ni Mh 2 Ah	350 vatios	24 voltios	10,7 minutos	1,3 Julios	4.400 per/min	5.720 Jul/Min	61.204 Julios	1,0	3,8 kg
BOSCH VRF	Ni Cd 2 Ah	350 vatios	24 voltios	12,3 minutos	1.3 Julios	4.400 per/min	5.720 Jul/Min	70.356 Julios	1,15	4,3 kg
HILTI TE 2A	Ni Cd 2 Ah	400 vatios	24 voltios	7,2 minutos	1,5 Julios	4.410 per/min	6.615 Jul/Min	47.628 Julios	0,8	3,3 kg
HILTI TE 2A	Ni Mh 3 Ah	400 vatios	24 voltios	10,8 minutos	1,5 Julios	4.410 per/min	6.615 Jul/Min	71.442 Julios	1,2	3,9 kg
HILTI TE 6A	Li-Ion/NiMh 2,4 Ah	375 vatios	36 voltios	13,8 minutos	1,5 Julios	5.020 per/min	7.500 Jul/Min	103.500 Julios	1,7	4,7 kg
KRESS PAH	Ni Cd 2 Ah	360 vatios	24 voltios	8 minutos	2 Julios	4.400 per/min	8.800 Jul/Min	70.400 Julios	1,15	3,6 kg
KRESS PAH	Ni Mh 3 Ah	360 vatios	24 voltios	12 minutos	2 Julios	4.400 per/min	8.500 Jul/Min	105.600 Julios	1,7	3,7 kg
MAKITA EHR2005 JE	Ni Mh 3,3 Ah	400 vatios (estimada)	24 voltios	10 minutos (estimada)	2,1 Julios	4.700 per/min	9.870 Jul/Min	98.700 Julios (esti)	1,6 -	4 kg
SPIT 327 SDS+	1,7 Ah	350 vatios	24 voltios	7 minutos	1,3 Julios	4.000 per/min	5.200 Jul/Min	36.400 Julios	0,6	3,8 kg
SPIT 327 SDS+	3 Ah	350 vatios	24 voltios	12,3 minutos	1,3 Julios	4.000 per/min	5.200 Jul/Min	63.960 Julios	1,05	4,5 kg
SPIT 328	1,7 Ah	360 vatios	24 voltios	6,8 minutos	2 Julios	4.000 per/min	8.000 Jul/Min	54.400 Julios	0,9	3,6 kg
SPIT 328	3 Ah	360 vatios	24 voltios	12 minutos	2 Julios	4.000 per/min	8.000 Jul/Min	96.000 Julios	1,6	3,9 kg

En amarillo he destacado los mejores valores.

Son los mejores taladros sobre el papel.

Los valores con un "+" significa que aunque no sean los taladros que más agujeros puedan hacer, los hacen muy rápido vistos los números que salen.